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ABSTRACT 

The to-completeness theorem is applied to prove theorems above two-cardinal models, 
homogeneous models, and categoricity in power in to-logic. 

In this paper we shall apply the co-completeness theorem to obtain results 
about two-cardinal models, homogeneous models, and categoricity in power. 
By co-logic, L ~, we mean the logic formed by adding to first order logic L a new 
unary predicate symbol N and individual constants 0, 1, . . . .  An co-model is a 
model for L '~ in which N = (0, 1,... }. The co-completeness theorem is a sufficient 
condition for a theory in co-logic to have an co-model; a statement o f  it and the 
relevant references are given in §1. 

For an introduction, we shall give here a brief summary of our main results. 
Let K be the class of all co-models of a theory T in co-logic. If  qS(x) is a formula 
and 92 a model for L ~', then q~(92) is the set of all elements of 92 which satisfy ~. 
In §2 we prove the following two-cardinal result: I f  K has a model 92 of power m 

such that N O < I 1 < m, then K has a model ~ of power N 1 such that I c~ (~)l 
= No. The above theorem was proved by Vaught in [10] for the case where 
K is the class of all models of a theory in first order logic, and our result genera- 
lizes Vaught's theorem to co-logic. 

In §3 we use the results o f § 2  to prove: I f  all models in K of power N 1 are 
homogeneous, then all uncountable models in K are homogeneous. This time 
the special case for first order logic appears to be new. (The definition and referen- 
ces for homogeneous models are given in §3). 

In §4 we apply the results of §3 to prove that: I f K  has a homogeneous model 
of power N 1 and K is categorical in power N1, then K is categorical in every 
uncountable power. For a theory T in first order logic, Morley [8] proved that: 
i f  T is categorical in one uncountable power then T is categorical in every 
uncountable power. It is known from Morley and Vaught [10] that, assuming 
the continuum hypothesis, every first order theory T which has infinite models 
has a homogeneous model of power N1. Thus, if we assume the continuum hypo- 
thesis, we have a new (and much shorter) proof of the upward part of Morley's 
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theorem, and also a generalization of the upward part of Morley's theorem 
to co-logic. 

All our above results still work if K is a PC~' class, that is, the class of all 
reducts to L of co-models of a theory in c0-1ogic with countably many extra pre- 
dicates. 

Besides the co-completeness theorem we shall make extensive use of the results 
of Tarski and Vaught [15], and Morley and Vaught [10]. Some applications 
of the w-completeness theorem to models of set theory will be given in [6]. The 
paper [7] contains theorems which are closely related to §3 and §4 of this paper, 
but do not use the co-completeness theorem. Most of our results in this paper 
were announced in the abstract [5]. 

1. Preliminaries. We use the letters ~t, fl, ... for ordinals, and re, n, ... for 
cardinals. Cardinals are identified with initial ordinals. We shall work with a 
countable first-order predicate logic L with identity symbol. For the basic notions 
of model theory see, e.g. [13], [15]. Models are denoted by German capitals 
92,~3,~, sometimes with subscripts, and the universe set of a model is denoted 
by the corresponding letters A, B, C. We shall sometimes enlarge the language L 
by adding new individual constant or predicate symbols. If a is an or-termed 
sequence of elements of a model 9.I for L, then (92, a) is a model of the language 
L(~) formed by adding 0t new individual constants to L. Similarly, ifR is an n-ary 
relation over A, then (92, R) is a model for the logic L(P) formed by adding a new 
n-ary predicate symbol P to L. The model (92,R) is called an expansion of 92 
to a model for L(P), and 9.I is called the reduct of (92,R) to L. The symbols 9~ ----~, 
92-<~ mean that 92 is elementarily equivalent to ~3, and 92 is an elementary 
submodel of ~3. An elementary chain is a sequence 

92o "~ 92, "< "'" < 92. <'", ~ < / L  

of elementary extensions. The fundamental result about elementary chains, 
due to Tarski and Vaught [15], is that the union U,<~92, of an elementary chain 
is an elementary extension of each model 92~. 

If  T is a theory (set of sentences) in L, then a sentence ~b is a consequence of T 
if every model of T is a model of ~b. We say that ~ is consistent with T if T u {~b} 
has a model. If  q~(x) is a formula of L whose only free variable is x, then 
we let 

~b(92) = {a ~ A : a satisfies ~b(x) in 9i}. 

By co-logic we shall mean the language L ° obtained by adding to L a new 
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unary predicate N and new individual constants 0,1,2, ..., one for each natural 
number. A model 

(%N,0 ,1 ,2 , . . . )  

for L '~ is said to be an to-model if N = {0,1,2, ...}. Two simple remarks about 
to-models are: 

Any submodel of an to-model is an to-model. 
The union of a chain of to-models is an to-model. 
A theory T in to-logic is said to be to-complete if 
(1) N(0), N(1), N(2),... are consequences of T, 

(2) I f  tk(x) is a formula and qS(0), q~(1), q5(2), ... are consequences of T, then 
Vx(N(x) ~ ~b(x)) is a consequence of T. 

The condition (2) is clearly equivalent to: 

(2') If q~(x) is a formula and 3x(N(x) A tb(x)) is consistent with T, then there 
exists n < to such that ~b(n) is consistent with T. 

The basic result about co-logic which we shall use is the 

to-COMPLETENESS THEOREM. Let T be a theory in co-logic. I f  T has a model 
and is to-complete, then T has an co-model. 

Various forms of the co-completeness theorem were obtained independently 
by several people, including Schutte, Henkin, Orey, Ryll-Nardzewski, (see Ad- 
dison [1], p. 36 for references). The above formulation is due to Orey [17]. 

A class K of models for L is said to be a pseudo-elementary class, or a PC~ 
class, if there is a finite or countable list of extra predicates Po, P1, ... and a 
theory T in L(Po,P:, ...) such that K is the class of all reducts to L of models 
of T. This notion is due to Tarski 1-13]. We shall say that K is an og-pseudo- 
elementary class, or PC'~ class, if there is a finite or countable sequence of extra 
predicates Po,PI,"" and a theory T in L°'(Po, P~,...) such that K is the class 
of all reducts ~ to L of to-models (92(,N,O, 1, ...,Ro, R1, ...) of T. 

It is clear that if T is a theory in L then the class of all models of T is a PC~ 
class, but not conversely. Also, every PC~ class is a PC~'class. The notion of a PC~ 
class is more general than it might first appear. For instance, consider the infinitary 
logic Lo,,,~ which has all the symbols of L plus countably infinite conjuctions 
and disjunctions. Scott 1-12] has shown that if 0 is a sentence in L,o,~,, then the 
class K of all models of 0 is a PC'~ class. In particular, if T is a theory in L, ~ is 
a set of formulas a(x), and K is the class of all models ~ of T such that no element 
of 9.I satisfies all formulas of Y~, then K is a PC~ class. Likewise, if T is a set of 
sentences in the weak second order logic of Tarski [14], or a set of sentences 
in the logic with the extra quantifier "there exist infinitely many"  (see Fuhrken [3]), 
then the class K of all models of T is a PC'~ class. Finally, if L already has the 
symbols N, 0,1, . . . ,  then the class of all to-models of a theory T in L is a PC~'class. 
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2. Liiwenheim Skolem theorems for two cardinals. Vaught in [10] proved the 
following theorem: 

Suppose 92 is a model for L, dp(x) is a formula, and No < [~(92)[ < I AI. 
Then there is a model ~ -  92 such that lqb(~)] = No and I c[ = N1. 

Chang conjectured that Vaught's theorem could be improved by replacing 
~ - 9 /  by E-< 92. Rowbottom [-11], however, showed that Chang's conjecture 
contradicts the axiom of constructibility. Our first theorem is an improvement 
of Vaught's theorem in the direction of Chang's conjecture. 

TIJEOREM 2.1. Suppose 92 is a model for L, qb(x) a formula of L, and 
N o < Iq5(92)[ < A .  Then there exist models ~ ,  ~ such that ~ <92.I, ~ "K~, 
~(~) = ~b(~), ~b(~)] = No, and [ C[ = N 1. 

Proof. Let m = [ ~b(92)]. 92 has an elementary submodel of power m + which 
contains ~b(92). Thus we may as well assume that IAI = m  + Let < be a well 
ordering of A of type m +. Let ~(xyvl... v,) be a formula in L(<)  and a 1,'", a, ~ A. 
We note that in the model (92, <), if there are arbitrarily large y ~ A such that for 
some x ~ q5(92), ~(xyal ... a,) holds, then there is a fixed x ~ ~(92) such that for 
arbitrarily large y ~ A, ~b(xyal... a,) holds. In other words, the sentence below 
holds in (92, <):  

Vvx "'" v. [Vz3y3x(z < y/~ (a(x) /~ ~(xyvl. . .  v.)) 
(1) 

3xVz3y(z < y A dp(x) A t~(xyh '"  v,))]. 

The main step in the proof is to show the following: 

(2) Every countable model (~o, <o)=  (92, <)  has a countable proper elemen- 
tary extension (~i ,  < 1) such that ~b(~31) = ~03o). 

After (2) is established we may take a countable elementary submodel (~,  <)  
of (9.I, <). Using (2) o~ times we construct an elementary chain 

<) = 030, <o) "< 03i,  < 0  "< "'" -< 03,, <,)  "< < o l ,  

such that for each a, [B~I =No, B ~ B ~ + t ,  and q~(~B~) = ~b(~). Let ¢ be the 
union of the elementary chain ~ , ,  z < ol .  Then ~B K ~, ~b(~) = ~b(~3), ] ~b(ff) [ = Ro, 

and ICI = N1. 
It remains to prove (2). First we make (~3o, < o) into an o-model 

(~o, <o,N,O, 1, "'') 

by letting N = ~(~o) and choosing distinct O, 1,--. so that N = {0,1,..-}. Then 
add a new individual constant cb to our language for each b ~ Bo and form the 

o-model 



1966] SOME MODEL THEORETIC RESULTS FOR ~o-LOGIC 253 

~ * = ( ~ o ,  <o,N,O, 1,'",b)b ~o" 

Finally we add one more new constant c. This gives us the logic L ~ with the 
extra pred!cate < and constants cb, b ~ B o and c. In this logic let T be the theory 
consisting of the following sentences: 

all sentences true in ~*  ; 

the sentences cb < c, for each b ~ Bo. 

Any finite subset of T has a model (~5", b) where c is interpreted by a sufficiently 
large element b in the ordering < o. Therefore T has a model. 

We now show that T is ~o-complete. Observe that a sentence 0(c) is consistent 
with T if and only if there are arbitrarily large elements b in the ordering < o which 
satisfy the sentence 0(y) in ~3". In other words 

O(c) is consistent with T if and only if the sentence 

(3) Vz3y(z < y A ~(Y)) 

holds in f5*. 

We also note that given any formula ~(Vo "") we may find a formula ff'(v o ... ), 
in which the symbols N,0,1, . . .  do not appear such that V V o . . . ( f f ~ ' )  is a 
consequence of T. To form ~b' we replace N(x) everywhere by ¢(x) and replace 
numerical constants m by the constants cb which denote the same element of ~*. 

Suppose now that the sentence 

3x(N(x) AO(xcbl "'" cb.c)) 

is consistent with T. We may assume that the symbols N,0,1, . . .  do not occur 
in 0. By (3) the sentence 

Vz3y3x(z < y A N(x) A O(XCbl"'" cb.Y)) 

holds in ~*. Then ~ *  also satisfies the sentence 

Vz3y3x(z < y A ¢(x) A O(xc~... cb,,y)). 

Using the fact that (~o, <o) ~ (9.I, <),  we see from (1) that 

~xVz3y(z < y A ¢(x) A O(xcb,... cb.y)) 

holds in ~*.  Then for some m < o2, 

Vz3y(z < y A O(mcb, ... cbnY)) 

holds in ~*.  Using (3) again, we see that the sentence 

O(m,c~, .-. c~ c) 
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is consistent with T. Therefore T is co-complete. By the co-completeness theorem 
T has an co-model 

(fB1, <l,N,O,1,...,b,c)b~Bo. 

(~31, < 1) is an elementary extension of (~3o, < o). It is proper because c e B1 - Bo. 
Moreover, N -- ~(~1) -- 4~(~o) • This proves (2). 

As a corollary we get a two-cardinal theorem for PC~' classes. 

COROLLARY 2.2. Let ~ be a model for L, O(x) a formula in L, and N o __< [ q~(9I) I 
<]A] (just as in Theorem 2.1). Suppose K is a PC~ class and 9.I~K. Then 
there exist ~ , G e K  such that ~3 ~(9.I,~3 ~(G, q~(~3) = q~(G), Iq~(G)l = No, and 
Icl=N,. 

Proof. For some theory T in an co-logic, L ~ (Po, P , ' " ) ,  K is the class of  all 
reducts to L of  co-models of  T. We need only apply Theorem 2.1 to models of  T 
with the formula ~b(x) = ~b(x) V N(x) in place of ~b(x). The point is that if ~* 
is an co-model of  T,~3* -K ~*,~3'  -KK*, and ~k(~3*) = ~b(G*),then ~3' and G* are 
also co-models of  T. 

Morley in [9] proved a (quite different) two-cardinal theorem in which the 
formula t~(x) is an infinite conjuction of formulas of  Linstead of  a single formula. 

Our next corollary is a generalization of  Vaught's two-cardinal theorem in which 
~(x) can be a formula in L~,,~ (this includes as a special case the infinite conjuctions 
@(x) of  formulas of L). 

COROLLARY 2.3. Let ~ be a model for L,~(x) a formula in L,oio, and No 
<= ]dp(~)] < A[. Then there exist models ~ , ~  such that f~ -K~,fB -K~, d~(~) 

q~(~, [q~(~) = No, and [C 1 = N1. Moreover, if  K is a PC~class and ~ K ,  
then we may also choose ~ , ~  so that ~ e K , ~ e K .  

Proof. Add an extra unary predicate symbol U to L. Let K '  be the class of  all 
models (~3, V) for L(U) such that ~ - 9.I and V =  4~(~) (and, if a K is given, 
~3 e K). V = ~(~3) is true if and only if (~3, V) satisfies the sentence 

Vx( u (x) ¢(x)) 

of L,,,,,. It follows that K '  is PC~. Now apply Corollary 2.2 to the class K '  with 
U (x) in place of  ~b(x). 

Corollary 2.2 is not in general true if we allow classes K which are defined 
using theories in a logic with uncountably many extra predicates. For instance, 
we could take the K which consists of  those models 9.I for which ]~b(A)[ > N 1. 

Moreover, using an example is Scott [12] one can easily find an uncountable 
set 12 of  sentences in L, ol, such that Corollary 2.2 is false for the class K of  all 
models of  12. 

As a last corollary, we apply the proof  of  Theorem 2.1 to give a necessary and 
sufficient condition for a theory in co-logic to have an co-model of  power N1. 
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COROLLARY 2.4. Let T 1 be the theory in the logic L c° ( < )  consisting of the 
following sentences: 

" <  is a strict linear ordering"; 

Vx3y(x < y); 

every sentence of the form 

Vvl ... Vv,[Vz3y3x(z < y A N(x) A ~(xyvl "'" v,)) --* 

3xVz3y(z < y A N(x) A ~(xyvl"'" v,))]. 

A theory T in L '° has an o~-model of power N 1 i f  and only i f  the theory TL) T1 
in L°~ ( < ) has an m-model. 

Proof. As in the proof  of  Theorem 2.1, one can show that every countable 
m-model of TU T1 has a proper elementary extension which is an ~o-model. 
It follows that TU T1 has an o~-model of  power N1, and the reduct of  this model 
to L '° is an o-model  of T of  power Nx. 

Furken [3] gave an improvement of Vaught's theorem in which the formula 
¢(x,y)  is allowed to have the extra parameter y. We shall extend Fuhrken's 
theorem to a~-logic. We need the following well-known generalization of the 
o~-completeness theorem: 

I f  T is consistent and w-complete with respect to (Ni, Oi, l i ,"" ) for  i = 0,1,2, ... ,  
then Thas a model which is an o-model with respect to each (Ni, Oi, li , . . .  ). 

If b e A, and ~(x, y) is a formula, we shall let ~(9.I, b) = {a e A: (a, b) satisfies 
¢(x, y) in ~}. 

THEOREM 2.5. Suppose K is a PC'~ class, dR(x,y) is a formula of L (or of 
L~lo) , and 9.I is a model in K whose power I AI is regular and such that 

(i) [¢(9.I,b)[ < [A[ for all b e A .  

Then K contains a model ~ of power N 1 such that 

(ii) I ¢(~ '  c)] __< No for all c E C. 

Proof. It suffices to prove that for every o~-model 9.I of regular power and with 
the property (i), there is an ~o-model ~ -  9.:[ of power Nx with the property (ii). 
We argue as in the proof  of  Theorem 2.1. Let < be a well ordering of  A of type 
[A I" Since JAi ls  regular, the model (9~, < ) satisfies the formula (1) with ¢(x, vl) 
in place of ~b(x). Let (~o,  < o) - (~,  < )  be a countable w-model. For each b e B o, let 

Nb = ¢(~o,  b) = {Oh, lb, "'" }. 

Using the co-completeness theorem with respect N and N b for each b ~ Bo, we 
see that (~o,  <o) has a proper elementary extension (~1, <1) which is an ~o- 
model such that 
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t~(~0, b ) =  ~b(~l,b ) for all beBo. 

By iterating this construction co 1 times we obtain the desired model ~. 
Notice that Theorem 2.5 is a corollary of Theorem 2.1 when the power of 92 

is a successor cardinal, but not when the power of 92 is an inaccessible cardinal. 
Fuhrken 13] gave an example showing that his theorem fails when the power 
of 92 is singular, and it follows that our Theorem 2.5 also fails in that case. 

3. Homogeneous theories. Consider a model 92 for L of uncountable power 
m. We say that 92 is homogeneous if for any two elementary submodels ~3, ~ -< 92 
of power less than m, any isomorphism of ~3 onto ~ can be extended to an 
automorphism of 96. This notion is due to Morley and Vaught [-10] and is based 
on earlier work of J6nsson [-4]. A more useful equivalent definition of homogeneous 
is given in the following/emma of Morley and Vaught [10]. 

LEMMA 3.1. A model 92 for L of power rrt is homogeneous if and only if the 
following holds. 

For all a < m  and all a, bEA  ~, if 

(92, a) = (9.I, b) 

then for all c EA there exists d c A  such that 

(92,a,c)=(92,b,d). 

The next lemma is an observation of Morley. 

LEMMA 3.2. Suppose 92 and ~ are homogeneous. Then 92 and ~ are iso- 
morphic if and only if 

(1) IA[=I I; 
(2) For every finite sequence a in A there is a finite sequence b in B such that 

(92, a) - (~3, b), 
and vice versa. 

Proof. I f  92 and ~ are isomorphic then (1) and (2) obviously hold. 

Assume (1) and (2). Using Lemma 3.1, one can show by induction on a that 
for each ~ < m and a ~ A" there exists b e B" such that (9~, a) --- (~ ,  b), and vice 
versa. By a "back and for th"  argument it follows that 92 and ~3 are isomorphic. 

We now prove the main theorem of this section. 

THEOREM 3.3. Suppose that K is a PC~' class. I f  every model 9AeK of power 
N~ is homogeneous, then every uncountable model in K is homogeneous. 

Proof. Let K contain a model 92 of power m > N1 which is not homogeneous. 
We shall find a model ~ e K of power ~1 which is not homogeneous. By Lemma 
3.1 there exists 0c < m, a, b e A ~, and c s A such that (92, a) = (92, b) but there is no 
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d ~ A with 
(~ ,a ,c ) - (qI ,  b,d). 

Now let P be a new binary predicate, let 

R = {(~p, bp):fl < a}, 

let q~(x) be the formula 

257 

3yP(xy) ~/ 3yP(yx), 

and consider the model (9.I, R). We have 

q~((~, R)) -- range(a) k9 range (b), 
and hence 

1 ~((9~, R)) I < m. 
Let 

~o(Vo), ~dVoVl), %(VoVlVO, "" 

be a list of all formulas of L. The list is chosen in such a way that all the free 
variables of ~b, are among vo,..., v,. Then (gA, R) satisfies the following sentence 
0 of L~,,~(P): 

3xoVYo V 3x1"'" x~yl"'" y. 
n < ¢ 9  

[P(xlYa) A "" A P(XnYn) A -7 (~.(Xo "'" x,) ~-~tp.(y o "'" y,))]. 

Let K '  be the class of all models 03, S) of 0 such that ~ e K. Then K '  is 
PC~ and (9~, R) e K' .  By Corollary 2.2 there is a model (if, S) e K '  such that 

(E, S) - (9,I, R), I ~b((E, S)) I = No, and [ C I = Na. Let (a~b~), (a~b~),... be a list 
of all pairs (c, d) e S. The list is countable because [ ¢((~, S))] = N o. It follows 
from (E, S) _= (9/, R) that 

(¢, a ') = (~, b'). 

Since (~, S) satisfies 0, there is a c' e C such that for no d' e C does 

(¢ ,a ' , c ' ) - (~ ,b ' ,d ' ) .  

Hence ff is a model in K of power N 1 which is not homogeneous. 

Theorem 3.3 above seems to give a new result even for first order logic: 

COROLLARY 3.4. If T is a theory in L and every model of T of power N~ is 
homogeneous then every uncountable model o] T is homogeneous. 

In Theorem 3.3, or even in the special case 3.4, we cannot replace N~ by an 
arbitrary uncountable cardinal. For Morley has given an ingenious example of 
a theory T in L such that all models of T of power at least 2 2% are homogeneous 
but T has models of each power less than 2 2% which are not homogeneous. 
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4. Categorical theories. In this section we shall give a relatively short new proof 
of the upward part of Morley's categoricity theorem (using the continuum hypo- 
thesis). Actually we shall prove a more general result in Theorem 4.1, involving 
PC~ classes. Theorem 4.1 does not use the continuum hypo thes i s -  it comes 
in only when we derive the upward part of Morley's theorem in Corollary 4.2. 

We shall say that a class K of models is categorical in power m if all models 
in K of power m are isomorphic. We allow the possibility that K has no members 
of power m. 

THEOREM 4.1. Suppose K is a PC'~class, K is categorical in power N1 and K 
contains a homogeneous model of power N 1. Then K is categorical in every 
uncountable power. 

Proof. By Theorem 3.4, all uncountable models in K are homogeneous. Suppose 
91, ~ eK,  both 91, ~3 have power m _-> N1, and 91,~3 are not isomorphic. Then 
by Lemma 3.2 there is, say, a finite sequence al , . . . ,a ,  e A  such that for no 
bl ," ' ,  bn e B do we have 

(91, al, ..., a,) - (~,  b~,..., b,). 

Choose 91o "~91, ~3o -<~3 such that 91o,~3oeK, IAol = IBo[ = N,, and 
ax, ..., a, e A o. Then Bo has no finite sequence b~, ..., b, such that 

(91o, al, "-, a,) - (~o, bD "", b,). 

Hence 9Io and ~o cannot be isomorphic. This contradicts our assumption that 
K is categorical in power N1. Therefore K is categorical in all powers m _-> Na. 

COROLLARY 4.2. Assume the continuum hypothesis 2 ~° = N1. Suppose K is 
a PC~ class and K is categorical in power N 1. Then K is categorical in every 
uncountable power. 

Proof. It is shown in Morley and Vaught [10] that, if 2 ~° = N1, then every 
PC~ class which has infinite models has a homogeneous model of power Na. 

The author first proved 4.1 in a way similar to the proof of 3.3 without using 
Lemma 3.2. We are indebted to Morley for pointing out that the proof could 
be simplified by using Lemma 3.2. 

For some examples of theories T in L which are categorical in power Nx see 
Morley [-8]. In each known example, it happens to be obvious that T is categorical 
in every power m > N~, because the proof that T is categorical in power N1 
also works for all m > N~. The same thing happens for each known example 
of a PC'~ class K which is categorical and has a homogeneous model of power Nx. 

The following are examples of PC6 classes K which are categorical in power 
N1 but cannot be characterized as the class of all models of some theory T 
in L. 
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1. The class of all models (A,E) where E is an equivalence relation over A, 
each equivalence class has power [A I, and there are [a l  different equivalence 
classes. 

2. The class of all models (A, El, E2) where El, E 2 are both equivalence rela- 
tions with I A I equivalence classes and each equivalence class of E 1 meets each 
equivalence of E 2 in exactly one element. 

3. The class of models (A, Po, P1,P2,'") where Po, P1,P2, ... are disjoint 
subsets of A of power I AI, and 

IA-UoP,  I=IAI • 

4. The class of abelian groups (A, + ) which have [A [ elements of order 2, 
order 3, and order 6, and no elements of any other order. 

5. Let L' be an extension of the language L, let T be a theory in L' categorical 
in power N~, and let Kbe  the class of all reducts to L of models of T. 

We shall now list some examples of PC'~ classes to which Theorem 4.1 applies. 
We shall give examples of PC~ classes K with the following property: 

(*) There is a countable extension L' of the logic L and a PC~' class K'  of 
models of L' such that K'  is categorical and has a homogeneous model 
in power N~, and K is the class of all reducts to L of models in K'. 

By Theorem 4.1, the class K'  in the condition (*) is categorical in every uncountable 
power. It follows at once that every class K with the property (*) is a PC'~ class 
categorical in every uncountable power. 

7. For each equational class M of algebras, the class K of all free algebras 
in M, also the class K'  of all models (92, U) where 92 is an algebra in M freely 
generated by U. Note that K'  has a homogeneous model of power K 1. 

8. The class K of all models (A, E) where E is an equivalence relation over A 
all of whose equivalence classes are of power No. A suitable class K'  is the class 
of all co-models (A,E,F, N, ...) such that E,F are equivalence relations over A, 
N is one equivalence class of E, and each equivalence class of F meets each 
equivalence class of E in exactly one point. 

9. Like 8 but all equivalence classes of E have finite power, and for each n < to 
there are I A [ classes of power n. 

10. Like 8 but all equivalence classes of E have power I AI and there are No 
equivalence classes. 

11. The class of all abelian groups (A, + ) in which the order of each element 
is a product of distinct primes and for each prime p there are I AI elements of 
order p. 

12. The class of all trees (A, < ) in which each element has finitely many 
predecessors and [ A [  immediate successors (and the tree has only one 
root). 
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13. The class of all models isomorphic to a model (A, _~) where A is the set 
of all finite subsets of a set X. 

14. The class of all models (A, Po, P1,...> where the P / a r e  disjoint subsets 
of A of power [A[ and U i < t a P  i = A. 

15. Let X be a countable set of subsets of c~. The class of all models 
(A, Po, P i, ...> where each P~ is a subset of A, and for each y coo, 

['~ Pi (3 0 ( A - Pi) 
ey i~y 

has power t A [ if y ~ X and is empty if y ¢ X. 

16. Let F be a countable field. The class of all pure transcendental extensions 
of F. 

17. Let 9~ be a countable algebra which has an element 0 idempotent for all 
the operations of 9/. The class of all weak direct powers 9~ ~ (whose universe 
set is the set of all functions f e A 1 with f(i) = 0 for all but finitely i e I). Note 
that 4, 1 are special cases of 17. 

18. Let ~ be a countable model for L. The class of all cardinal multiples 911 
of 9~ (unions of disjoint copies 9~i, i e I, of 91). 

19. Let Ko, K1, '"  all have the property (.), and let K be the class of all cardinal 
sums 

9/0 + 9g 1 + ... 

of  models 9/n e Kn all of the same power. 

20. Let K o have property (.) and let K be the class of cardinal multiples 911, 
where 9~e K0 and IAI : - I I1 .  

The following problem is open: Generalize the results of this paper by replacing 
N~ by an arbitrary uncountable cardinal. For example, are the following three 
things true for all m > N1 and all PC~ classes K, or if not, what else must be 
assumed about K or m? 

A? If  there is an 9~ e K with 

m = l (9 )l < t a l ,  

and if N 1 < n < m, there is a ~ e K such that 

. - -  1+( 3)1 < 1 8 1  . 

B? If  every model of K of power m is homogeneous, then every model of K 
of power greater than m is homogeneous. 

C? If  K is categorical in power m then K is categorical in every power greater 
than m. 

D? Suppose that T is a complete theory in L and every model of T of power 
N 1 is homogeneous. Does it follow that T is categorical in power Nl? 
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The referee has pointed out  that  the answer to question A is negative when 

m = N,~ (assuming the GCH),  because o f  an example due to Chang.  By com-  

bining Chang ' s  example with a result o f  Morley [9], we see that  question A 

has a negative answer whenever m is a singular cardinal o f  cofinality less than 

N,~I(GCH ). To make question A reasonable, we must  stipulate either that  m is 

regular or  that  m has cofinality at least N,~. 
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